DC BRIDGE SYSTEM DYNAMIC STRAIN AMPLIFIRE MODEL 5693

OPERATDN MANUAL

I NTRODUCTI ON

ABefore Using ∇

Thank you for your purchase of our product strain amplifier Model 5693. Please read this manual carefully before operating this instrument.

This manual provides the information necessary to operate the instrument safely. This manual covers basic functions and operations of Model 5693 amplifier and handling precautions. Place this manual within reach of Model 5693 amplifier. If you encounter any problem in the manual, please contact our sales representative.

AExamining Contents in Package ∇

If opening the package in a warm room during the cold season, open the package after it has reached room temperature to avoid any operational failure due to condensation on the surface of the product.
The warranty does not apply for the case where damages or faults caused by use against instructions, warnings, or cautions.

This instrument is delivered after a thorough examination at the factory prior to shipment. However, please examine the product's condition and verify that no obvious shipping damage has occurred after opening the package. Also, examine the specifications of the input units and accessories. If there are any missing or damaged items, please contact our sales representative.

ACautions ∇

- The contents of this manual are subject to change without notice.
- This manual is copyrighted with all rights reserved. No parts of this manual may be transcribed or reproduced without written permission.
- Please let us know if there are any points that are unclear or missing in this manual.
- We do not assume any responsibility for the outcome of the use of Model 5693 amplifier.

PRECAUTI ONS

To avoid accidents, read this manual carefully before use. Observe the following warning and cautions when using amplifiers. The warranty does not apply any damage caused by the use against instructions, warnings, and cautions. To safely use the amplifiers, the following statements are used in this manual to call the readers' attention.

©WARNING

This indicates a condition or practice that could result in personal injury or loss of life, and measures and instructions to avoid such conditions.

\triangle CAUTION

This indicates a condition or practice that could result in damage to the instrument or other property and general cautions that users must take into consideration.

©WARNING

- Power Supply

Make sure that the power supply is within the rating. If any voltage exceeding the rated voltage were supplied, there would be risk of damage to this amplifier, or even a fire. Also, in order to prevent electric shock and hazards such as a fire, be sure to use only the AC power cable and the adapter (3-prong/2-prong converter) supplied with this amplifier.

- Protective Grounding

Be sure to ground this amplifier before supplying power. Grounding is necessary to use this amplifier safely, as well as to protect the user and peripheral equipment from injury or damage. Be sure to observe the following instructions:

1) Protective grounding

This product uses a 3-pole power cable, which is provided with grounding. Always connect to the power outlet having grounding. If using 3-prong/2-prong adapter, secure the grounding by connecting either a protective terminal or a grounding lead extending from the adapter.
2) Caution on protective function

While the power is supplied to the amplifier, do not cut or remove the protective grounding line. Otherwise, safety of the amplifier is not guaranteed.
3) Protective function failure

Avoid using this product when there is a failure in protective grounding or protective functions. Confirm that there is no failure in the protective function before using.

- Use in Gaseous Atmosphere

Never use this amplifier in a flammable or explosive atmosphere, or atmosphere of steam. Use in such atmosphere will result in danger to users and the amplifiers.

- Disassembling the Frame

It is dangerous to remove the frame. Do not remove the frame from the amplifier other than 100VAC/200VAC switching using the selection switch.

- Input Signal Connection

Connect the signal wire to the input terminal after connecting protective grounding terminal to the ground. When connecting the signal wire, check whether the signal wire is being properly protected from leak signals from the environment or common-mode voltage in order to avoid electrical shock or burning. Note that Model 5693 does not have isolation between the input block and output block.

- Cautions during Operation

Be careful of operations because large voltage might be applied between the input terminal (input signal wire) and ground of this amplifier or input terminal and output terminal (output signal wire).

- Installation Category and Contamination Level

Model 5693 amplifier is devices with Installation Category II and Contamination Level II. Use them following the regulations defined in Installation Category II and Contamination Level II.

\triangle CAUTION

- Caution in Handling

When using this amplifier, always follow the precautions below.

1) Users

Users who are not familiar with the operation of this instrument should avoid using it.
2) Use and storage environment

The storage temperature and humidity of this instrument is -20 to $70^{\circ} \mathrm{C}$ and 10 to 90%, respectively. Avoid storing in places where the temperature could rise over the storage temperature and where there is direct sunlight exposure such as inside an automobile.
Do not use this recorder at the following locations.

1. Locations where the temperature and humidity rise due to direct sunlight or heaters. (The operating environment of the amplifier; temperature: -10 to $50^{\circ} \mathrm{C}$, humidity: 20 to 85%)
2. Wet locations
3. Locations where salt, oil, or corrosive gases exist
4. Damp or dusty locations
5. Locations subject to strong vibrations
3) Cautions on power supply
1. Be careful of power voltage fluctuations. Avoid using the amplifier when the voltage is likely to exceed the rated voltage.
2. If the power supply includes a lot of noise or high-voltage inductive noise, use a noise filter or other noise protection.
4) Calibration

We recommend a periodical calibration to maintain the accuracy. More reliable measurement are possible by calibrating the amplifier once a year (extra cost option).

CAUTI ON IN HANDLI NG

Read this manual carefully before using the amplifier.

1. Do not apply neither voltage nor current to the output terminal of this amplifier from external source.
2. Use this amplifier with power supply voltages from 85 VAC to 132 VAC, 180 VAC to 264 VAC, or 10 VDC to 30 VDC. The AC power supply selection switch is provided inside the chassis. To switch the AC power supply voltage, refer to Page 7-4. If the power fuse is burnt, check the cause of fuse blow-out. To replace the fuse, always disconnect the power plug and input/output signal cable first, and then replace the fuse in the fuse holder. For how to replace fuse, see Page 7-3. When replacing, examine the ratings of fuse (e.g. for AC or DC).
3. The operating temperature and humidity of the amplifiers is -10 to $50^{\circ} \mathrm{C}$ and 20 to 85%, respectively. If opening the package in a warm room during the cold season, open the package after it has reached room temperature to avoid any operational failure due to condensation on the surface of the product.

Do not use this instrument at the following locations.

- High-humidity locations
- Locations with direct sunlight exposure
- In the vicinity of high-temperature heat source
- Location with vibrations
- Locations where salt, water, oil, or corrosive gases exist

4. When using many amplifier units, install fan units.
5. When a case is used to accommodate amplifiers, the case must be grounded.
6. This product uses a flash memory for saving setup values. Replacement of battery is not needed accordingly.
7. This amplifier unit uses rotary encoders are used for knobs to control functions. However, indication position of the knob sometimes stays at the position between scale markings. In such case, the settings upon power-up may differ from those upon turning off the amplifier. To avoid such event, it is recommended to allow knob indication to be at the correct scale marking position.

WARRANTY

We ship our products after conducting quality control, which covers from design to manufacturing. It is, however, possible that failures may occur in the products. If the product does not operate correctly, please make a check of the power supply, cable connections, or other conditions before returning this product to us. For repair or calibration, contact our sales representative. Before returning, be sure to inform us of the model, serial number, and problematic points. The following is our warranty.

LI M TED WARRANTY

1. Warranty period

Two years from our shipment.
2. Warranty limit

We will repair the defects of our product free of charge within the warranty period; however, this warranty does not apply in the following cases.
(1)Damage or faults caused by incorrect use.
(2)Damage or faults caused by fire, earthquake, traffic accident, or other natural disasters.
(3)Damage or faults caused by a repair or modification that is carried out by someone other than a service representative of SHOWA MEASURING INSTRUMENTS.
(4)Damage or faults caused by use or storage in environmental conditions that should be avoided.
(5)Periodical calibration.
(6)Damage or faults caused during transportation.
3. Liability

We do not assume any liabilities for equipment other than SHOWA MEASURING INSTRUMENTS.

TABLE OF CONTENTS

INTRODUCTION
Before Using 1
Examining Contents in Package 1
Cautions 1
PRECAUTIONS
PRECAUTIONS 2
Warning 3 to 4
Caution 5
CAUTIONS IN HANDLING
Cautions In Handling 6
WARRANTY
Warranty 7
Limited Warranty 7
TABLE OF CONTENTS 8 to 10

1. OVERVIEW
1.1 Features 1-1
1.2 Major Features of Amplifiers 1-2
1.3 Accessories 1-2
1.4 Block Diagram of Measurement 1-3
1.5 Features of Dynamic Strain Amplifiers 1-4
2. NANMES AND FUNCTIONS OF PARTS
2.1 Names and Functions of Parts on Front Panel 2-1 to 2-5
2.2 How to Set Calibration Value (CAL/Entering strain) 2-6
2.3 How to Set Calibration Value (CAL/Entering voltage) 2-7
2.4 Indication upon Balancing 2-8
2.5 Names and Functions of Parts on Rear Panel 2-9 to 2-10
2.6 Selecting Bridge Supply 2-11

3. BEFORE MEASURING

3.1 Cable Connections 3-1
3.1.1 Input Cable Connections 3-1
3.1.2 Connections of Power Supply Cable and Output Cable 3-2
3.2 Operation before Measuring 3-2
3.2.1 Standalone Operation 3-2 to 3-3
3.2.2 Measuring Range 3-4
3.3 Bridge Check Function 3-5
3.3.1 Overview 3-5
3.3.2 Error Indication List upon Wire Disconnection and Short 3-6
3.4 Cable length compensation Function 3-7
3.5 How to Switch Special Function Setting 3-8
3.6 Cases 3-9
3.6.1 Names of Case Elements 3-9
3.6.2 How to Use Case 3-9 to 3-11
3.6.3 Heat Release for Case 3-12 to 3-13
4. MEASURMENT
4.1 Cautions before Measuring 4-1 to 4-2
4.2 Input Connection 4-2
4.2.1 Examples of Strain Gauge Bridge Configurations 4-2 to 4-4
4.2.2 Bridge Box 4-5 to 4-7
4.2.3 Measurement with Transducer 4-7 to 4-8
4.2.4 When using Model 5693 amplifier as DC amplifier 4-9 to 4-10
4.3 Connection of Output to Load 4-11
4.3.1 Connection of Output to Data Recorder 4-11 to 4-12
4.4 How to Read Measured Values 4-12 to 4-14
4.4.1 Correction of Calibration (CAL) Values 4-14 to 4-15
4.5 Special Applications 4-16
4.5.1 Configuring two or more bridges using a single power supply 4-16
4.5.2 Special use of transducer 4-16 to 4-17
5. OPERATION THEORY
5.1 Flow of Measured Signal 5-1
6. OPTIONAL FUNCTIONS
6.1 Current Output (56-201 4 to 20 mA output unit) 6-1
6.2 Case Function and Type 6-1
6-2-1 Accommodating amplifier units 6-1
6-2-2 How to Mount Blank Panels 6-2
6-2-3 Connecting Grounding Wire 6-2
6-2-4 Cautions on Rack-mount Case 6-2
7. MAINTENANCE
7.1 Items to Be Checked 7-1 to 7-2
7.2 How to Replace Fuse 7-3
7.3 Changing AC Power Supply Voltage 7-4
8. SPECIFICATIONS
8.Specifications 8-1 to 8-3
9. REFERENCES
9.1 Frequency and Phase Characteristics 9-1
9.2 Cable List 9-2 to 9-4
9.3 Dimensional outline drowing 9-5
9.3.1 Unit 9-5
9.3.2 Panel cut sizes 9-6
9.3.3 Bench-top Case 9-7
9.3.4 Rack-mount Case 9-8
9.3.5 Fun Unit 9-9
9.3.6 Bridge Box (5370 and 5373) 9-10
9.3.7 Compact Bridge Box (5379 and 5380) 9-11

1.OVERVIEW

1.1. Features

Model 5693 is amplifier that inherits the superior performance in conventional SHOWA's amplifiers. Moreover they feature new functions such as wire length adjustment and wire disconnection checking, realizing higher-accuracy and higher-quality measurement and a reduction in measurement preparation time. Model 5693 includes an LED monitor and the auto-balancing function, thereby improving their operability. Since constant voltage ranging from 2VDC to 10VDC for bridge power supply is used and a high frequency response (DC to 500 kHz in Model 5693) is realized, measurement of high-speed strain like shocks is possible. Also this amplifier can be used as a DC amplifier, featuring 10,000X in the maximum gain.

Another feature of Model 5693 amplifier is their lead-free and battery-less product design. When several amplifier units are installed in a case, power supply, auto-balancing, calibration value input and key-locking for all amplifier units can be made by one operation. If you encounter any problem, read the section for maintenance, and contact with our sales representative if the problem is not solved.

DC Strain Amplifier

1.2 Major Features of Amplifier

The following table lists the overview of dynamic strain amplifier.

Model	BV	Configuration	Balance	Frequency response	Sensitivity (at $\mathrm{BV}=2 \mathrm{~V})$	Major application
5693	DCV	Unit	Auto	DC~500kHz	$10 \mathrm{~V} / 1,000 \times 10^{-6}$ strain	Measurement of high-speed strain like a shock Can be used for a DC amplifier.

Table 1-1 Specifications of DC Strain Amplifier

The following cases for units are provided.

Product Name	Model	Description	Remark
4 to 20 mA output unit	56-201	OUTPUT2: 4 to 20mA output	Specified upon ordering
Bench-top case	56-104	4CH Bench-top case	Functions of +/- CAL, BAL, KEY, LOCK and batch power-on/off are available for all units. Linked or synchronized operation with other units is available.
	56-106	6CH Bench-top case	
	56-108	8CH Bench-top case	
Rack-mount case	56-208	8CH Rack-mount case	

Table 1-2 Description of Case

1.3 Accessories

Output cord (0311-2057) $\times 1$
-Time-lag fuse
(Fuse for AC power supply: 85 to $132 \mathrm{VAC} / 180$ to $264 \mathrm{VAC}, 125 \mathrm{~mA}$: 0334-3007 x 1)
(Fuse for DC power supply: 10 V to $30 \mathrm{VDC}, 800 \mathrm{~m} \mathrm{A:} \mathrm{0334-3015} \mathrm{\times 1)}$
-Screw driver x 1
AC power cord (47326)
Instruction Manual x 1

1.4 Block Diagram of Measurement

The following diagram illustrates a typical measurement system that broadly covers a variety of factors including signal amplitude, frequencies, and measuring time.

Fig. 1-1 Block Diagram of Measurement

1.5 Features of Dynamic Strain Amplifier

Bridge power voltage supply	DC bridge (DC strain amplifier)
Recommended sensors	1. Strain gauges 2. Sensors for load, displacement, acceleration, and torque (Strain gauge-type transducers)
Features	DC strain amplifiers have higher non-linearity and sensitivity than those of AC strain amplifiers. Generally, the DC strain amplifiers are used with strain gauge transducers, but they can also be used as DC amplifiers.

Table 1-3 Recommended Sensors and Features

Amplifier Type	DC Strain Amplifier
Model	$\mathbf{5 6 9 3}$ (Wide-range type)
Voltage sensitivity	$\pm 10 \mathrm{~V}$ output at $\pm 1,000 \times 10^{-6}$ strain
Non-linearity	$\pm 0.01 \% / \mathrm{FS}$
Frequency response	DC to 500 kHz
Noise	80×10^{-6} strain p-p
Maximum gain	$10,000 \mathrm{X}$
Bridge voltage	$2,3,5,9$, and 10 VDC
Measurement with strain gauge transducers	+++
Measurement of strain such as shock	+++
Measurement with strain gauge	+
If the distance between measuring point and instrument	+++
If the distance between measuring point and instrument	+++
Using as DC amplifier	Cable length compensation

+++: Best suited ++: Suited +: Usable but not suited
Table 1-4 Using General Functions

2. NAMES AND FUNCTIONS OF PARTS

Fig. 2-1 Front Panel

Fig. 2-2 Rear Panel

2.1 Names and Functions of Parts on Front Panel (See Table 2-1.)

Number	Name	Function
(1)	Model	Model indication
(2)	Level meter (17-dot LED)	This level meter monitors the output voltage of OUTPUT1
		3. The green LED at the middle turns on when the output voltage is within $\pm 100 \mathrm{mV}$. When the output voltage exceeds

Table 2-1 Front Panel: Names and Functions (1)

Number	Name	Function
(3)	Digital monitor (Four digits 1/2)	$\begin{array}{l}\text { This monitor digitally displays the output voltage of } \\ \text { OUTPUT2 4. When OUTPUT2 level adjustment volume } \\ \text { (18) is turned clockwise, [10.000] is indicated in response to an } \\ \text { output of 10 V. In combination with (8), } 2 \mathrm{kN} \text { can be displayed } \\ \text { as [2.000] when the transducer converting } 2 \mathrm{kN} \text { to } 10 \mathrm{~V} \text { is } \\ \text { used. For decimal point shift, refer to page 3-8. }\end{array}$
(4)	$\begin{array}{l}\text { Bridge check } \\ \text { Cable length compensation } \\ \text { lauto-balance knob (BAL) } \\ \text { - See pages 3-5 to 3-7 for bridge } \\ \text { check and cable length } \\ \text { compensation }\end{array}$	$\begin{array}{l}\text { Pressing the knob performs bridge check and cable length } \\ \text { compensation, enabling automatic balancing of resistors and } \\ \text { capacitance. For details, see page 2-8 Indication upon } \\ \text { Balancing. } \\ \text { The result of bridge check is indicated on digital monitor (3). } \\ \text { If there is neither disconnection nor short, the indication of } \\ \text { Good is made, thereby making cable length compensation }\end{array}$
(dropout rate indication) and auto-balancing. If there is a		
disconnection or short, the problematic location is repeatedly		
indicated. After confirming the location, make repair. For more		
information on bridge check function, see pages 3-5 and 3-6.		
Note: When the high-pass filter is used (High-pass filter LED		

Table 2-1 Front Panel: Names and Functions (2)

Number	Name	Function
(5)	Keylock switch (KEY LOCK)	On/Off switching for keylock can be made by pressing this knob for one second or longer. While in the lock state, keylock LED (6) turns on. In this state, BAL (4), measuring range selection (8), measuring range fine tuning (9), calibration value setting (12) and filter setting (16) cannot be used. Pressing this knob for one second or longer cancels the lock; keylock LED (6) also turns off.
(6)	Keylock LED	This LED indicates whether keylock is effective or not, in that light-up for lock and light-out for unlock..
(7)	Bridge power voltage LED $(\mathrm{BV}(\mathrm{~V}))$	This LED indicates the bridge power voltage $(2 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}, 9 \mathrm{~V}$ or 10 V). To select, use bridge power voltage selection switch 2 on the rear panel. For more details, see 2-11 Bridge Power Selection.
(8)	Measuring range selection knob (RANGE)	This knob is used to select the measuring range. Turing this knob clockwise narrows the measuring range (i.e. increasing the sensitivity). See page 3-4 for measuring range. In this case, fine tuning is not made. [Fine tuning LED (10) turns off.]
(9)	Measuring range fine tuning knob (FINE)	Fine tuning is made with the knob. Turning the knob clockwise narrows measuring range (i.e. increasing sensitivity) and widens the range (i.e. decreasing sensitivity). As measuring range fine tuning knob (9) and measuring range selection functions together in Model 5693, the range automatically shifts when signals exceed the measuring range. See measuring range LED (11). Fine tuning LED (10) turns off upon range shift.
	Speed selection (SLOW/FAST)	Pressing this knob allows the fine tuning speed for measurement range to switch between high speed and low speed. Also, resistance balance fine tuning (4) is switched between high speed and low speed.
(10)	Fine tuning LED	This LED turns on while fine tuning is made.
(11)	Measuring range LED	This LED indicates measuring range. The measuring ranges of Model 5693 are explained in 3-4 Measuring Range.

Table 2-1 Front Panel: Names and Functions (3)

Number	Name	Function
(12)	Calibration value setup knob $(\operatorname{CAL}(\mu \varepsilon)) \mu \varepsilon=10^{-6}$ strain	Indicated value is calculated value based on input. The value can be set from $1 \mu \varepsilon$ to $9999 \mu \varepsilon$ by a step of $1 \mu \varepsilon\left(\mu \varepsilon=10^{-6}\right.$ strain). Pressing the knob changes the digit for calibration value LED (${ }^{(3)}$ and turning the knob changes values. For further information, see page 2-6 How to Set Calibration Value. The value the equivalent voltage value based on a gauge factor of 2.0 and the one gauge configuration $(1 \mathrm{mVN}=2000 \mu \varepsilon)$.
(13)	Calibration value LED	The LED displays calibration value and setting status (digit blinking).
(4)	Calibration value application switch	This switch is used to input the value that is set by calibration value setting knob (12). Pushing toward right inputs a plus value (tension) and pushing toward left inputs a minus value (compression). As a calibration value is superimposed with the input signal to generate the output voltage, return the position to OFF (middle) after inputting the calibration value.
(15)	High-pass filter LED	This LED turns on when the high-pass filter is used.
(16)	ON./OFF for high-pass filter (FILTER)	Pressing the knob allows the high-pass filter to switch between ON and OFF. High-pass filter LED (15) turns on for ON and it turns off for OFF. Filter type: 2-pole Bessel filter Cut-off frequency: 0.5 Hz
	Low pass filter setting knob (FILTER)	This knob is used to set the low-pass filter. Turning the knob allows the filter to be set to OFF (= W/B) or cut-off frequency. The setting information is displayed on low-pass filter LED (77). Filter type: 4-pole Bessel filter Cut-off frequencies: $10,30,100,1 \mathrm{k}, 30 \mathrm{kHz}$, W/B
(7)	Low-pass filter LED	This LED indicates the cut-off frequency for the low-pass filter. W/B (wideband) signifies OFF for the low-pass filter.

Table 2-1 Front Panel: Names and Functions (4)

Number	Name	Function
(18)	OUTPUT2 level control volume	The output voltage for OUTPUT2 4 4 can be controlled from the rating 10 V to 1 V . Control the voltage with the attached screw driver. The output value is indicated on the digital monitor (3). As decimal point shifting is possible through the dip switch on the bottom face of the amplifier unit, digital monitor (3) can be used for an indicator. For how to shift the decimal point, refer to page 3-8.
(19)	Power switch (POWER)	Pressing this switch supply the power to the amplifier unit. The power is turned off by pressing this button again.

Table 2-1 Front Panel: Names and Functions (5)

2.2 How to Set Calibration Value (CAL/Entering strain)

The indicated value is calculated value based on input. The value can be set from $1 \mu \varepsilon$ to $9999 \mu \varepsilon$ by a step of $1 \mu \varepsilon\left(=10^{-6}\right)$. Values should be set for each digit (Fig. 2-3). Pressing calibration value setting knob (12) (Fig. 2-3) turns on the fourth digit of calibration value LED (13). Turning the switch changes the value on ($(13$. Even the indication is blinking, the setting is being made.
Press the knob when your target value is indicated. In this case, blinking of (13) turns to lighting (value fixed), and then the third digit starts blinking. Repeat this step up to the first digit. After the first digit turns on and then all digits turns on, calibration value setting completes. To change the calibration value, repeat the steps above. The value is based on the equivalent value for gauge factor 2.00 and one gauge configuration. For strain gauge-type transducer, set and calculate the value based on $1 \mathrm{mV} / \mathrm{V}=2000 \mu \varepsilon$.

Calibration value setting

For strain input ($\mu \varepsilon$)				
Cal i br at i on val ue (CAL) set ting range	Forth Digit	Third Digit	Second Digit	First Digit
1 to 9999	$012 \& 456789$	0123456789	0123456789	0123456789

Fig. 2-3

Calibration value (CAL)

E.g. To convert Calibration value (CAL) from $2000 \mu \varepsilon$ to $5000 \mu \varepsilon$

Indication 0 at the first digit
Four digits turn on. The setting completes
blinks. Press (12) once as a value change for the first digit is not necessary.
set the value to 5 . Press (12).

Indication 5 at the fourth digit turns on and 0 at the third digit blinks. Press (12) twice as value changes for the third and second digits are not necessary.

Fig. 2-4

2.3 How to Set Calibration Value (CAL/Entering voltage)

To change the unit from mV to $\mu \varepsilon$ and $\mu \varepsilon$ to mV , depress calibration value setting knob (12) (See Fig. 2-5) for one second or longer. Then, the indication of LED changes (e.g., from $\mu \varepsilon$ to mV). You can change the unit by depressing the calibration value setting knob (12) for one second or longer when setting the value of each digit. The settable values are as follows.
Calibration value setting
For voltage input

Fig. 2-5
E.g. When changing the CAL value from $2000 \mu \varepsilon$ to 80.25 mV (See Fig.2-6)

Press calibration value setting knob (12) for one second or longer.

As soon as the fourth digit blinks, decimal number digit starts blinking. The unit of LED (13) changes from $\mu \varepsilon$ to mV . Turn (12) and set the value to 8 , and then press (12).

A value of 8 is turned on the forth digit and also the third digit blinks. As the third digit value cannot changed (staying to be 0), press (12).

All digits turns on
and the setting is completed after 80.05 is indicated.

A value of 2 is turned on the second digit, and then the first digit blinks. Turn (12) to set to 5 , and after that Press (12).

A value of 0 is turned on the third digit, and then the second digit blinks. Turn (12) to set 2 , and after that press (12).

Fig. 2-6

2.4 Indication upon Balancing

Pressing BAL knob (4) executes bridge check and cable length compensation, thus automatically realizing resistance balancing. While the bridge check and functions are effective (ON), the following indications appear. If there is wire disconnection or short, the problematic location is indicated repeatedly on digital monitor (3). The indication continues until the BAL knob is pressed for five seconds or longer or the power of amplifier is turned off. Make repair following the indication. When bridge check is not effective (OFF), the portions enclosed by broken line are omitted, executing auto-balancing. For how to set these functions to ON or OFF, refer to page 3-10 How to Switch Special Function Setting.

Fig. 2-1 Front Panel

Fig. 2-2 Rear Panel

2.5 Names and Functions of Parts on Front Panel (See Table 2-2)

Number	Name	Function
1	Input connector (INPUT)	The bridge box or a transducer is connected.
2	Bridge power voltage selection switch (BV)	Selection of power voltage applied to the bridge can be switched (2, 3, 5, 9, 10V).
3	Output connector 1 (OUTPUT1)	The output voltage and current are $\pm 10 \mathrm{~V}$ and $\pm 5 \mathrm{~mA}$, respectively. This connector can be connected to a recorder (e.g. thermal-dot recorder or data acquisition devices) or AD converter, which accept voltage signals

Table 2-2 Rear Panel: Names and Functions(1)

Number	Name	Function		
4	Output connector 2 (OUTPUT2)	The output voltage and current are $\pm 10 \mathrm{~V}$ and $\pm 10 \mathrm{~mA}$, respectively. The output level can be controlled from 10 V to 1 V with OUTPUT2 level adjustment volume (18) on the front panel. Note: If output of current from 4 to 20 mA is required, modification from the voltage output to the current output is available with extra costs. For details, contact with our sales representative.		
5	Interface connector (I/F)	This connector is used to connect an amplifier unit and case electrically. The pin layout is shown as follows. Other than DC power voltage supply, it is possible to perform keylock, auto-balancing, calibration value application, and synchronous signal output. A connection cable is available separately.		
		(1) +CAL	(2) -CAL	(3) BAL
		(4) N.C.	(5) N.C.	(6) KEYLOCK
		(7) GND	(8) DC+	(9) DC-
6	Protective grounding terminal	If 3-pin power cord cannot be used for grounding, use this terminal for grounding.		
7	Power supply connector	This is the connector to be connected to the AC power cable. The AC power supply block of the amplifier unit have a withstand voltage of $1.5 \mathrm{kVAC} / m i n u t e ~ a g a i n s t ~ i n p u t, ~ o u t p u t, ~$ and case. Note: When using a power supply of 100 VAC , use AC power cord 47326. When using 110VAC or higher, use optional AC power cord 200V (0311-5112). When using 180 to 264 VAC, also use optional AC power cord 200V (0311-5112).		

Table 2-2 Rear Panel: Names and Functions (2)

2.6 Selecting Bridge Supply

Users can change bridge voltage by the voltage pinch on the back panel.
Bridge supply: $2 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}, 9 \mathrm{~V}$ and 10 V
Set the slit of the pinch at the number of selected voltage.

3.BEFORE MEASURING

3.1 Cable Connections

3.1.1 Input Cable Connections (See Fig. 3-1.)
(1) Paste a strain gauge to the location where measurement is made.
(2) Connect the strain gauge to the bridge box.
(3) Adjust the power supply for strain gauge with bridge power voltage selection switch 2 . Set the supply voltage to 2 V for general 120 -ohm strain gauge. When using a transducer, set to $3 \mathrm{~V}, 5 \mathrm{~V}$, 9 V , or 10 V according to the input voltage. For details see page 4-7, Measurement Using Transducer.
(4) Connect the bridge box or a transducer to the input connector 1 on the rear panel. For connection information, see Cautions before Measuring on page 4-1. Since Model 5693 automatically adjust the voltage drop generated between the bridge and the amplifier through the cable length compensation function, high-accuracy measurement is possible. For more information on this adjustment function, see page 3-7.

Fig. 3-1 Connection with bridge box and so on
3.1.2 Power Supply Cable and Output Cable Connections (See Fig. 3-2)
(1) Use the power supply cable for 100 VAC (Model 0311-5112 for 110 VAC or higher), 200 VAC, or 12 VDC depending on the voltage.
(2) Connect the output cable appropriate to the recorder to be used.
(3) For more information, refer to Connection between Output and Load on page 4-11.
(4) The chassis of this amplifier is connected to the output common lead.

Fig. 3-2 Connection of power supply code and output cable

3.2 Operation before Measuring

3.2.1 Standalone Operation
(1) Set the calibration value application switch (14) (+ - -) to the • (OFF) position.
(2) Pressing power switch (19) (POWER) supplies power to the amplifier.
(3) Set the measuring range to OFF (Measuring Range LED (11)) using measuring range selection knob (8) (RANGE).
(4) Setting the measuring range to OFF using measuring range selection knob (8) illuminates the green LED in the middle of level meter (2). Activate for about 10 minutes.
(5) For correct strain measurement, you must conduct initial balancing for the bridge circuit. Tune to your target measuring range using measuring range selection knob (8) and adjust the output to zero while no load is being applied.
(6) Bridge check, cable length compensation, and automatic balancing.

Turn measuring range selection knob (8) clockwise up to your target measuring range, and then narrow the measuring range (i.e. increasing sensitivity). In this case, the indication of measuring range LED (11) changes from OFF to other values, in that the value changes toward 1k. Pressing the BAL knob (4) performs the wire disconnection check, wire length adjustment (indication of the rate of damping), and auto-balancing in this order. For more information, see Indication upon Execution of BAL on page 2-8. (These functions are available when the dip switches for the bridge check and cable length compensation are set to ON.)
When there is neither wire disconnection nor a short, and indication of Good is indicated on the digital monitor (3), and then the cable length compensation(indication of the rate of damping) and auto-balancing are performed. If there is a wire disconnection or short, the
examination results are indicated on the digital monitor (3) repeatedly. The contents to be indicated are listed on the pages from 3-5 to 3-7. Following the indicated results (page 3-6), repair the cable or bridge. After the repair, press BAL again for at least five seconds to check for failures.
The cable length compensation automatically calculates the voltage drop occurring in the cable connecting between the amplifier and measurement point (bridge), saving this calculation data into the internal memory. The power supply to the bridge is provided after this adjustment. As a result, high-accuracy strain measurement is available without considering the conductor resistance generated by the cable.
After the cable length compensation is made, the initial balance is made, and then the green LED in the middle illuminates. For further fine-tuning, turn the BAL knob (4) clockwise or anti-clockwise. The adjustment range is an output of $\pm 1 \mathrm{~V}$.

* The cable length compensation data is stored in the internal memory until the BAL switch is pressed, even if the power switch (19) is turned on or off. The wire length function is set to off or non-adjustment by the dip switch on the bottom face of the amplifier.
* For more information on bridge check function and cable length compensation, see the pages 3-5 to 3-7.
(7) In response to the magnitude of the strains anticipated, apply a calibration value using the calibration setting knob (12) first, and then start measuring.
The measuring range can be checked after applying a calibration value using the calibration value application switch (14). The measuring ranges for the amplifier are described on page 3-4.

3-2-2 Measuring Range

Measuring Range (Measuring Range LED (11)	Measuring Range Fine Tuning Knob (9)	Measurable Strain $\times 10^{-6}$ strain)	
		BV=2V	BV=3V
1 k	1 X to 2 X continuous tuning	$\pm 1,000$ to $\pm 2,000$	± 666 to $\pm 1,333$
2 k	1 X to 2.5 X continuous tuning	$\pm 2,000$ to $\pm 5,000$	$\pm 1,333$ to $\pm 3,333$
5 k	1 X to 2 X continuous tuning	$\pm 5,000$ to $\pm 10,000$	$\pm 3,333$ to $\pm 6,666$
10 k	1 X to 2 X continuous tuning	$\pm 10,000$ to $\pm 20,000$	$\pm 6,666$ to $\pm 13,333$
20 k	1 X to 2.5 X continuous tuning	$\pm 20,000$ to $\pm 50,000$	$\pm 13,333$ to $\pm 33,333$
50 k	1 X to 2.5 X continuous tuning	$\pm 50,000$ to $\pm 125,000$	$\pm 33,333$ to $\pm 83,333$

Measuring Range (Measuring Range LED (11)	Measuring Range Fine Tuning Knob (9)	Measurable Strain ($\times 10^{-6}$ strain)	
		$\mathrm{BV}=5 \mathrm{~V}$	$\mathrm{BV}=9 \mathrm{~V}$
1 k	1 X to 2 X continuous tuning	± 400 to ± 800	± 222 to ± 444
2 k	1 X to 2.5 X continuous tuning	± 800 to $\pm 2,000$	± 444 to $\pm 1,111$
5 k	1 X to 2 X continuous tuning	$\pm 2,000$ to $\pm 4,000$	$\pm 1,111$ to $\pm 2,222$
10 k	1 X to 2 X continuous tuning	$\pm 4,000$ to $\pm 8,000$	$\pm 2,222$ to $\pm 4,444$
20 k	1 X to 2.5 X continuous tuning	$\pm 8,000$ to $\pm 20,000$	$\pm 4,444$ to $\pm 11,111$
50 k	1 X to 2.5 X continuous tuning	$\pm 20,000$ to $\pm 50,000$	$\pm 11,111$ to $\pm 27,777$

Measuring Range (Measuring Range LED (11)	Measuring Range Fine Tuning Knob ©	
		Measurable Strain $\left(\times 10^{-6}\right.$ strain)
$1 \mathrm{BV}=10 \mathrm{~V}$		

Table 3-1 Measuring Range of Model 5693

As measuring range fine tuning knob (9) of Model 5693 functions in tandem to measuring range selection. Accordingly, if the signal exceeds the measuring range, the range automatically changes (See measuring range LED (11). Fine tuning LED (10) turns off upon switching.

3.3 Bridge Check Function

3.3.1 Overview

The bridge check function of the amplifier can detect a bridge wire disconnection, short, or cable disconnection. Since disconnected portions can easily be found, testing personnel can reduce the measurement preparation time or prepare countermeasures against wire disconnections. The bridge check function can be set to on or off using the dip switch on the bottom face of the amplifier.
(The bridge resistance should be 120Ω or higher.) Bridge circuit block

Fig. 3-3 Block diagram for bridge check

When no failure is found after the bridge check, the indication Good is displayed on the digital monitor. If a failure is found, the failure information is repeatedly displayed on the digital monitor (3). The indication does not disappear until the BAL knob is pressed or the amplifier unit power supply is turned off. For error contents, refer to page 3-6. After confirming the cause of failure, take measures to repair the failure. Following repairs, press the BAL knob for longer than five seconds for disconnection checking. If there is no problem, Good is indicated.
If disconnection or a short is detected, there is always an error indication. However, the failure location may not be found depending on the number of disconnections or the disconnection conditions on the cable or at the bridge, or both.
When the wire disconnection function is turned off, switch the dip switches on the bottom face of the amplifier according to How to Switch Special Function Setting on page 3-8.

Cable disconnection occurs between A and B in the bridge circuit.

Cable disconnection occurs at cable C

Short disconnection occurs between A and D in the bridge circuit.

Fig. 3-4 Example of error indication

3.3.2 Error Indication List upon cable Disconnection and Short

Error indication in the case of disconnection

Disconnection on bridge circuit				Disconnection on cable				INDICATION Digital Monitor(3)								
A- B	B- C	C- D	D- A	A	B	C	D									
\bigcirc	Good															
\times	\bigcirc	E-ab														
\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	E-bc								
\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	E-cd								
\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	E-da								
\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	E-ab E-bc or E-Lb								
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc									
\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	E-bc E-cd or E-Lc								
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc									
\bigcirc	\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc		E-cd	-da or	E-Ld					
\bigcirc	\times		E-cd													
\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc		E-ab E-da or E-La							
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc									
\bigcirc	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	E-bc E-da								
\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	E-ab E-cd								
\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	E-ab	E-bc	E-cd or	E-Lb	E-Lc				
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc									
\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	E-ab	E-bc	E-da or	E-La	E-Lb				
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\bigcirc									
\times	\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	E-ab	E-cd	E-da or	E-La	E-Ld				
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\times									
\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	E-bc	E-cd	E-da or	E-Lc	E-Ld				
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times									
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\times	\bigcirc	OPEn								
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\times									
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\bigcirc									
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times									
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\times	\times									
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times									
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times									
\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc									

Error Indication in the case of short

Table 3-2 Error indication upon wire disconnection and short

3.4 Cable length compensation Function

If the length of the cable connecting between the bridge and amplifier is long, the bridge resistance is lower due to the conductor resistance of the cable. For the rate of the bridge voltage drop, refer to table 3-3 below. Before this function is employed, testing personnel made remote sensing through a 6 -core cable or adjustment through values for the cable length or wire diameter.

Model 5693 employs a unique automatic compensation circuit in lieu of the conventional techniques above, thereby enabling supplying the bridge power that reflects conductor resistance. Since high-accuracy strain measurement is possible, testing personnel can reduce measurement time.

On/off for cable length compensation can be switched using the dip switch on the bottom face of the amplifier. See page 3-8 for more details.

	Distance between amplifier and bridge box (m)			
Bridge Resistance	20 m	50 m	100 m	200 m
120Ω	-1.2	-3.0	-5.8	-11.0
350Ω	-0.4	-1.1	-2.1	-4.1
500Ω	-0.3	-0.7	-1.5	-2.9
1000Ω	-0.1	-0.4	-0.7	-1.5

Table 3-3 Bridge Voltage Drop rate(\%) ($0.5 \mathrm{~mm}^{2}$ wire at $20^{\circ} \mathrm{C}$)

1) Automatically calculating voltage drop of the bridge voltage due to cable conductor resistance.
2) Applying the bridge voltage reflecting the voltage drop

Length: 300 m , Core wire: $0.5 \mathrm{~mm}^{2}$, using our optional extension cable

Fig. 3-5 Schematic diagram of cable length compensation Function

3.5 How to Switch Special Function Setting

By switching dip switches on the bottom face of the amplifier, settings for special functions can be made.

- ON/OFF for cable length compensation
- ON/OFF for bridge check function
- Decimal point shift for digital monitor (3)

Fig. 3-6 Position of dip switch

Dip switch	Function	Description
	Factory-set (Factory-set settings)	Cable length compensation function: (Switch 1 is Off.) Bridge check function: ON (Switch 2 is On.) Decimal point of digital monitor (3), displaying decimal point at the fourth place: 10.000 (Switches 3 and 4 are On.)
1234	Cable length compensation function (Switch 1 changeover)	Cable length compensation function: OFF (Switch 1 up: Off) Cable length compensation function: ON (Switch 1 down: On)
$\begin{array}{\|lll} \hline & \square & \\ 1 & 2 & 3 \\ \mathrm{ONP}^{2} \end{array}$	Bridge check function (Switch 2 changeover)	Bridge check function: OFF (Switch 2 up: Off) Bridge check function: ON (Switch 1 down: On)
$\begin{array}{l}\square \\ \\ 1\end{array}$ \square 1 \square	Decimal point indication (Setup through the combinations of switches 3 and 4)	Displaying the decimal point of digital monitor (3) at the third place: 100.00
	Decimal point indication (Setup through the combinations of switches 3 and 4)	Displaying the decimal point of digital monitor (3) at the second place: 100.00
	Multipoint indication (Setup through the combinations of switches 3 and 4)	No indication of the decimal point on digital monitor (3): 10000

Table 3-4

ON/OFF switching for dip switches is possible when the amplifier is turned on.

3.6 Cases

3.6.1 Names of Case Elements

Fig.3-7

Use standard AC power cord (47326) that is attached to the case as a standard for 100 VAC power supply.
Use optional DC power cord (47229) for DC power supply.

3.6.2 How to Use Case

A) Power supply cable connection

When using a battery (12 VDC , or 10 to 30 VDC) for power supply with amplifier units being installed in a case, take into account the voltage drop caused by the DC power cord length and wire diameter. When using several channels or a long power supply cord, a voltage drop occurs. This voltage drop may cause the power supply voltage to be lower than the allowable power supply voltage of 10 V at DC power input connector.
For example, the DC power supply cord (47229) has a core area of $1.25 \mathrm{~mm}^{2}$. If eight amplifiers are mounted, a current of $3.2 \mathrm{~A}(0.4 \mathrm{~A} \times 8)$ flows, and a voltage drop of 0.5 V will occur if the cord is extended to 10 m . If a $10-\mathrm{m}$ cable with $0.75 \mathrm{~mm}^{2}$ is used, a voltage drop of 1.65 V will occur. For use under such conditions, the power supply should be provided with the voltage drop taken into account, or the wire diameter or cord length of the power cord should be modified.

B) Synchronization between units and cases

When several units are mounted in the case, wires for signals are connected inside of the case. BAL, calibration value application, or key lock can be made for all units in the case using the BAL switch, calibration application switch, or key lock switch for all channels positioned on the front panel.
Moreover, the synchronization is also available by connecting cases using the synchronization cable (Fig. 3-8).

Fig. 3-8 Rear Panel of case

C) Balancing for all units (1)

Hold down the switch for BAL for all units (1). You can execute the bridge check, cable length compensation, and auto-balancing for all units in a case. For a bridge check and cable length compensation, ON/OFF setting (selectable with dip switches) for each unit is also effective. Auto-balancing is made for all amplifier units. This function is available for all amplifier units installed in two or more cases, which are connected to each other with a synchronization cable. To perform auto-balancing for one unit, press the BAL knob (4) for that unit.

Fig. 3-9 Front Panel of case

D) Switch for application of calibration values to all units

Hold down the switch to apply calibration value (2). A calibration value is set to all amplifier units. This switch has priority over the calibration value application switch (14) in each amplifier unit regardless of the position of the switch (+ - -). This function is available for all amplifier units installed in two or more cases, which are connected to each other with a synchronization cable. To apply a calibration value to only one unit, use the calibration value application switch (14) in each unit. Before doing so, confirm that the switch (2) for applying the calibration value to all units is set to OFF.
E) All unit key locking switch (3)

Key locking is made for all amplifier units in a case by pushing up (ON) the key locking switch for all units (3). In this case, the all units key locking LED turns on. While key locking is effective, the BAL switch for all units (1) positioned in a case, BAL knob (4), measuring range selection knob (8), measuring range fine-tuning knob (9), calibration value selection knob (12), and filter selection (16) that are positioned on the front panel of each amplifier unit do not function. To cancel the key locking, hold down the key locking switch for all units (3). In this case, if key locking is set in each amplifier unit, the key locking status is maintained. This is applicable when two or more cases are being used.

F) Remote box

The same operations are available when a small control box like in Fig. 3-10 is used. The BAL switch should include a locking mechanism in order to avoid erroneous operations. Use a momentary switch accordingly.

Fig. 3-10 Remote Box Overview
$\left[\begin{array}{llll}\text { (5) (4) (3) } & \text { (2) } & \text { (1) } \\ \text { (9) (8) } & \text { (7) } & \text { (6) }\end{array}\right.$

Case/Interface Connector Pin Alignment

(1) + CAL	(2) - CAL	(3) BAL
(4) (OSC)	(5) (GND)	(6)KEYLOCK
(7) GND	(8)N.C	(9)N.C

Table 3-5 Interface Connector at Rear Face of Case

CAUTION
Table 3-5: The pins \#4 and \#5 of the interface connector on the back case are not used for the DC strain amplifier. They are for the synchronization signal connector pin of the AC strain amplifier.

3.6.3 Heat Release for Case

A) Using standalone rack-mounting case

\triangle CAUTION

As a rack-mounting case does not have legs, avoid placing it on a desk or floor. Otherwise, heat cannot be released, resulting in damages to amplifiers. It should be properly mounted.

Fig. 3-11 Rack-mount Case Installation
B) Using two or more rack-mounting cases

In this case, install fans following the criteria below because the temperature in the unit rises depending on the number of stacks in the rack, load, and ambient temperature.

Number of case	Number of fan unit under severe condition
$1-2$	1
$2-4$	2
$4-6$	3

Note: What are harsh environmental conditions?

- Power supply: 110 VAC (+10\%)
- Output voltage and current: +10V, 10 mA
- Ambient temperature: $+50^{\circ} \mathrm{C}$

Table 3-6 Number of Fan for Heat Release and Rack-mount

Fig. 3-12 Disposition of fan

If fan unit A may prevent upward air flows (when the depth differs as shown with a slant), fan unit A should be mounted directly above this position. Through this fan layout, fan unit A ventilates, and fan unit B enhances natural convection. One fan unit B should be installed for every three cases. It should be mounted as close to a case as possible.

4. MEASUREMENT

4.1 Cautions before Measuring (Refer to Table 4-1)

Before starting measurement, check the following points:

Items	Cautions	Reasons
Installation environment for strain gauges and bridge box	The joints must be soldered, and the connectors must be properly connected.	Prevents poor connections, noise, and instability in operation.
	The insulation resistance of strain gauges must be equal to or greater than $60 \mathrm{M} \Omega$.	Prevents instability in operation as well as noise from entering the equipment.
	Installing the bridge box and strain gauges in the presence of strong magnetic or electric fields must be avoided.	Prevents noise from entering the equipment.
	Install the bridge box and strain gauges in environments where there is as little moisture as possible and the ambient temperature is not high.	Prevents instability in operation.
	The leads that connect strain gauges to the bridge box should be as short as possible and should be shielded.	Prevents reduction in the gauge factor and deterioration in output linearity. Prevents noise from entering the equipment.
	The interconnecting cable, which connects the bridge box to the amplifier unit, should be as short as possible. (The amplifier automatically compensates for bridge voltage drops with its cable length compensation.)	Prevents a bridge voltage drop, which may result in an error between the signal and the internal calibrator.
Installation environment for dynamic strain amplifier system	The amplifier system must be used in environments where the ambient temperature ranges from -10 to $+50^{\circ} \mathrm{C}$ and the ambient humidity ranges from 20 to $85 \% \mathrm{RH}$ (with no condensation).	Prevents instability in operation.
	Install the amplifier system in environments where acceleration of mechanical vibrations is less than 3 G ($3000 \mathrm{rpm}, 0.6 \mathrm{mmP-P}$)	Prevents damage and noise from entering the equipment.
	Installing the amplifier system in the presence of strong magnetic or electric fields must be avoided.	Prevents noise from entering the equipment.
	The housing case must be properly grounded (when the system operates on $A C$ power).	Prevents noise from entering the equipment.
Operation of dynamic strain amplifier system.	Select the bridge supply voltage in accordance with the strain gauge to be used.	Prevents measurement errors due to generation of heat in strain gauges.
	The connectors must be properly connected.	Prevents instability in operation and poor connections.
	Care must be taken not to smear the input connector with oil, dirt, or anything else.	Prevents instability in operation and poor connections.
	Verify that the power supply voltage is within the range of specifications. AC: $85-132 \mathrm{~V}$, or $180-264 \mathrm{~V}$ DC: $10-30 \mathrm{~V}$ Check that the polarity of the battery is correct, especially when 12 VDC is used.	If the supply voltage is less than the lower limit, failures in operation may occur. If the supply voltage is higher than the specified upper limit, heat may be produced, which may result in damaging electronic components. If the polarity of the battery is not correct, the amplifier system will not operate. (However, the system and the battery will not be damaged though.)

Table 4-1 Precautions before Measuring (1)

	Do not apply pressure to strain gauges when units are in the auto balancing mode.	Applying pressure to strain gauges in auto balancing mode causes the bridge to be unbalanced.
	Do not turn the measurement range selector control (8) or the measurement range fine adjustment control 9 during measurement. (Use the keylock function.)	Prevents changing the amplitude of a preset calibration value.
	Before using a low-pass filter, the operator should be familiar with its characteristics.	Prevents reducing amplitude and the occurrence of phase differences.
	Prevent short-circuit in the output cable.	The power supply may be disabled, and heat will be generated in the circuitry.
Countermeasures against noise	1. Use shielded wires as leads connecting strain gauges and connect the metal shields of the wires to terminal E on the bridge box.	
2. Connect the ground terminal of the bridge box to terminal E and the base metal.		
3. Ground the output common.		
Performing all of or any of the above steps, 1, 2, and 3, may be effective for noise reduction.		

Table 4-1 Precautions before Measuring (2)

4.2 Input Connection

4.2.1 Examples of Strain Gauge Bridge Configurations

When incorporating one or more strain gauges into the four arms of a bridge, a quarter-, half- or full-bridge configuration can be used. These configurations can further be classified into same sign equivalent values, different sign equivalent values, and different sign constant proportional values according to the type of strain applied to the strain gauge(s). In addition, by effectively utilizing the characteristics of the bridge, measures can be taken to compensate for the effect of temperatures, eliminate errors, or increase the output.

This section describes examples of bridge configurations that are generally used. The following symbols are used:

R : Resistance of fixed register (Ω)
Rg : Resistance value of strain gauge (Ω)
Rd: Resistance value of dummy gauge (Ω)
r : Resistance value of lead wire (Ω)
e: Output voltage from bridge (V)
K: Gauge factor of strain gauge to be used (2.00)
ع: Amount of strain applied ($\mu \varepsilon$)
E : Bridge excitation voltage (V)
v : Poisson's rate of an object to be measured

For information on how to cement strain gauges and on the characteristics of strain gauges, refer to the technical manuals provided by the strain gauge manufacturers. The wiring methods of the bridge boxes shown in Table 4-2 are applied where bridge box 5370 is used.

Circuits	Bridge Configurations	Examples	Bridge Box Wiring Methods	Remarks
	One-gauge configuration			-Suited for where simple tension, compression, or bending force is applied -Suited for where changes in ambient temperature are small -Calculated using the calibration value as it is
	One-gauge, three- wire configuration			-Suited for where simple tension, compression, or bending force is applied -Strain-gauge-lead wires are temperature-compensated. -Calculated using the calibration value as it is
	one-active gauge, one-dummy gauge configuration			-Suited for where simple tension, compression. or bending force is applied -Temperature compensation using a dummy gauge -Calculated using the calibration value as it is
	Two-active Gauge configuration			-Suited for where simple tension, compression, or bending force is applied -Temperature compensation -Calculated using calibrated value $\times 1 /(1+v)$. or signal value $\times 1 /(1+v)$
	Two-active Gauge configuration			-Detects bending strain -Eliminates tension and compression strain -Temperature compensation -Calculated using calibration value $\times 1 / 2$ or signal value $\times 1 / 2$
	Opposite-arm, two-activegauge configuration			-Detects tension and compression strain -Eliminates bending strain -Effects of changes in temperature are doubled -Calculated using calibration value $\times 1 / 2$ or signal value $\times 1 / 2$

Table 4-2 Wheatstone Bridge Connections (1)

	Opposite-arm, two-active, three-wire configuration			-Detects tension and compression strain -Eliminates bending strain -Effects of changes in temperature are doubled -Strain-gauge-lead wires are temperature-compensated. -Calculated using calibration value $\times 1 / 2$ or signal value $\times 1 / 2$
	Four-active gauge configuration			-Detects tension and compression strain -Eliminates bending strain -Temperature compensation -Calculated using calibrated value $\times 1 / 2(1+v)$. or signal value $\times 1 / 2(1+v)$
	Four-active Gauge configuration			-Detects bending strain -Eliminates tension and compression strain -Temperature compensation -Calculated using calibration value $\times 1 / 4$ or signal value $\times 1 / 4$
	Four-active Gauge configuration			-Detects torsional strain -Eliminates tension, compression, and bending strain -Temperature compensation -Calculated using calibration value $\times 1 / 4$ or signal value $\times 1 / 4$

Table 4-2 Wheatstone Bridge Connections (2)

4.2.2 Bridge Box

The bridge box comprises a terminal box, a cable, and a connector. The terminal box has terminals for connecting strain gauges and contains high-precision resisters (e.g., 120Ω for 5370). The bridge circuit is formed by connecting one strain gauge or more to the terminals.
The following four types of bridge boxes are now available.

	General-size	Small-size
For 120Ω	5370	5379
For 350Ω	5373	5380

Table 4-3 Type of Bridge Box
(1) Installation
a. Install the bridge box in an area as close to the measurement point as possible.
b. The bridge box may be secured with screws using the screw holes shown in Fig. 4-1, as needed.
c. Avoid installing the bridge box where it will be exposed to high humidity, excessive temperature changes, or strong electric and magnetic fields.
d. When the bridge box is installed, secure the interconnecting cable, if possible, and connect it to the amplifier unit.
(2) Connections to bridge box (5370/5373/5379/5380)

Fig. 4-1 Overview of Bridge Box

Fig. 4-2 Wire Connection on Bridge Box
a. As shown in Fig. 4-1, pins A and C are provided for the bridge power supply, and pins B and D are provided for the input to the amplifier unit. Pin E is the common terminal.
b. This is a bridge for measuring strain. Various methods are used for connecting strain gauges.

For details on these connecting methods, refer to "Examples of Strain Gauge Bridge Configuration" on page 4-3. When using various types of transducers via the bridge box, make connections as shown in Fig. 4-2.
c. If the cable from the bridge box or a transducer to the amplifier unit is long, the bridge voltage will drop due to the conductor resistance of the cable as shown in Table 4-4. Because the output voltage from the bridge deviates from the calibration (CAL) value due to the bridge voltage drop, the calibration value must then be corrected. For information on how to correct it, refer to "Correction of Calibrated (CAL) Value" on page 4-10. The amplifier, however, has (standard) cable length correction that provides a proper bridge voltage taking the conductor resistance of the cable into account. This enables precision measurements without having to pay attention to the difference between the output voltage and the calibration (CAL) value.

For information on how to correct the value, refer to "Correction of Calibrated (CAL) Value" on page 4-15.
As the amplifier can supply the bridge voltage in which cable conductor resistance is considered thanks to the cable length compensation function (standard), accurate measurement can be made without regarding the error between output voltage and calibration value.

	Distance between amplifier and bridge box (m)			
Bridge resistance	20 m	50 m	100 m	200 m
60Ω	-2.4	-5.8	-11.0	-19.9
120Ω	-1.2	-3.0	-5.8	-11.0
350Ω	-0.4	-1.1	-2.1	-4.1
500Ω	-0.3	-0.7	-1.5	-2.9
1000Ω	-0.1	-0.4	-0.7	-1.5

Table 4-4 Bridge Voltage Drop Rate (\%) ($0.5 \mathrm{~mm}^{2}$ wire, $20^{\circ} \mathrm{C}$)

For how to adjust, see 4-14 Calibration Value (CAL) Correction
d. Make connections by screwing and soldering when Models 5370 or 5373 are used. With Models 5379 or 5380 , make connections only by soldering.
e. If the lead wires from strain gauges to the bridge box are long, the gauge factor will become apparently lower and the output linearity will deteriorate, even when the bridge has been initially balanced. The lead wires, therefore, should be as short as possible (2 m or less). The gauge factor of a strain gauge supplied with lead wires attached has been calibrated together with the lead wires. Do not cut them or add other lead wires.

4.2.3 Measurement with Transducer

In most strain-gauge-based transducers, the physical amount to be measured is applied to an elastic part, and the resulting deformation is converted into an electrical amount.
This elastic part is called the sensing part. The sensing part is made of material which exhibits a higher limit of proportionality and less creep and hysteresis. A strain gauge is cemented on the sensing part, connected so as to form a bridge, temperature-compensated and anti-humidity. For details on various types of transducers, refer to the technical manuals provided by manufacturers.
(1) Connection of transducer to the amplifier unit

When using various types of transducers with the amplifier unit, make connections as shown in Fig. 4-3, Fig 4-4 shows cables that are used for directly connecting various types of transducers to the amplifier unit. SHOWA's interconnecting cables and extension cables are manufactured in accordance with the specifications for input connectors of strain gauges specified by the Japanese Society of Non-destructive Inspection.

Fig.4-3 Connection of transducer to the amplifier unit

Extension Cable: 47231

Junction Cable: 47230

Fig.4-4 Connecting Cable
(2) Operating precautions on use of transducers
a. Unstable and loose attachment of a transducer may cause malfunctioning of the amplifier unit or noise. Transducers should be securely fixed after referring to manufacturer's operation manuals.
b. Although transducers and their connectors are generally moisture-proof, they should be placed to avoid water and rain so that insulation can be maintained.
c. Even though the cable from the amplifier unit to the transducer is long, precision measurements can be taken because of the cable length correction feature. (Refer to page 3-7.)
d. A transducer to be used must be a type on which the common (E) terminal of the amplifier unit will not be connected to another terminal (A, B, C or D).
e. Do not place transducers and their interconnecting cables where they will be exposed to strong electric and/or magnetic fields.
f. Table 4-5 lists the maximum bridge voltage that can be applied to the transducer, which is calculated based on the bridge allowable current and drift. For more details, see the transducer instruction manual.

Bridge resistor	Bridge voltage (BN)
60Ω	Within 2V
120Ω	Within 3V
350Ω	Within 10V
500Ω	Within 12V
1000Ω	Within 12V

Table 4-5 Bridge Resistance and Bridge Voltage

4.2.4 When using Model 5693 amplifier as DC amplifier

(1) When the amplifier is used as DC amplifier using a bridge box In this case, CMRR drops slightly.

Fig. 4-5
(2) When the amplifier is used as DC amplifier using a DC amplifier cable (47228)

Fig. 4-6

Fig. 4-7
(a) When using amplifier with one-side wire grounded

The output from amplifier in Fig. 4-6 is common mode output. Noises from commercial power supply (hum) may be regarded as a signal, and is amplified and output. To make inverse phase output, connect red wire and white wire inversely. If noises from power supply comes to mixed in, make the red wire as short as possible.
(b) When using amplifier for differential input

This amplifier is a differential input amplifier, common mode voltage $\mathrm{e}_{\text {CMV }}(\pm 5 \mathrm{~V})$ does not appear as an output. Only the difference between e_{1} and e_{2} will be amplified.
(3) Cautions when using
a) The allowable input voltage is $\pm 8 \mathrm{~V}$ or less
b) The common mode voltage is $\pm 5 \mathrm{~V}$ or less
c) For the relation between input range and gain, refer to the following tables.

Model 5693

Measuring range (Measuring range LED (11)	Measuring range (Gain) Fine tuning knob (9)	Input range	Gain
1 k	$1-2 \mathrm{X}$ Continuous tuning	$\pm 1 \mathrm{mV}$ to $\pm 2 \mathrm{mV}$	$10,000 \mathrm{X}$ to $5,000 \mathrm{X}$
2 k	$1-2.5 \mathrm{X}$ Continuous tuning	$\pm 2 \mathrm{mV}$ to $\pm 5 \mathrm{mV}$	$5,000 \mathrm{X}$ to $2,000 \mathrm{X}$
5 k	$1-2 \mathrm{X}$ Continuous tuning	$\pm 5 \mathrm{mV}$ to $\pm 10 \mathrm{mV}$	$2,000 \mathrm{X}$ to 1,000X
10 k	$1-2 \mathrm{X}$ Continuous tuning	$\pm 10 \mathrm{mV}$ to $\pm 20 \mathrm{mV}$	$1,000 \mathrm{X}$ to 500 X
20 k	$1-2.5 \mathrm{X}$ Continuous tuning	$\pm 20 \mathrm{mV}$ to $\pm 50 \mathrm{mV}$	500 X to 200 X
50 k	$1-2.5 \mathrm{X}$ Continuous tuning	$\pm 50 \mathrm{mV}$ to $\pm 125 \mathrm{mV}$	200 X to 80 X

Table 4-6 Input Range and Gain

The input ranges of Model 5693 are $\pm 125 \mathrm{mV}$ for the gain of 80 X . To input high voltage than those voltages, use $1 / 100$ attenuator probe (47322). However, the frequency response will be DC to 30 kHz when the attenuator probe is used.

A calibration value can be applied when the amplifier is used as a DC amplifier. For $\mu \varepsilon C A L$, the amplifier can be used by reading the unit of $\mu \varepsilon$ as $\mu \mathrm{V}$ by setting BV to 2 V .

4.3 Connection of Output to Load

Two types of outputs are available; OUTPUT 1 and OUTPUT 2.
(1) OUTPUT 1

Delivers a voltage of $+/-10 \mathrm{~V}$ and a current of $+/-5 \mathrm{~mA}$ (into a load of $2 \mathrm{k} \Omega$ or more), allowing voltage-input type instruments such as thermal dot recorders and data acquisition devices to be connected to OUTPUT 1.
Thus output is displayed on the monitoring meter(2).
(2)OUTPUT 2

Delivers a voltage of $+/-10 \mathrm{~V}$ and a current of $+/-10 \mathrm{~mA}$ (into a load of 332Ω or more).
The output voltage of OUTPUT2 can be varied from $+/-10 \mathrm{~V}$ to approximately $+/-1 \mathrm{~V}$ with the level adjustment control (18). Because this output can be displayed digitally on the digital monitor (3), it can also be displayed as a physical amount by adjusting the output voltage (scaling).

4.3.1 Connection of Output to Data Recorder

Special care must be taken with the input level of data recorders. Especially with frequency-modulated data recorders, if an input signal greater than the allowable input level of the data recorder is applied, it may be overmodulated, causing failure in recording. To avoid this, the amplifier unit is capable of displaying excessive output voltage.

As shown in Fig. 4-8, if the input signal exceeds the threshold level (approximately +/-10.5 V), an LED located on the right or left side of the reading blinks for a certain period of time. An excessive level up to a frequency of approximately 1 kHz can be checked on the monitoring meter (2).

Fig. 4-8

Fig. 4-9

Care must be taken concerning the following points for connection to a data recorder.
(1) Where direct connections can be made

If a data recorder is capable of accepting a signal of more than $20 \mathrm{Vp}-\mathrm{p}(+/-10 \mathrm{~V})$, it can be directly connected to the amplifier unit.
(2) Where a voltage divider is required

If the input level of a data recorder is $+/-1 \mathrm{~V}$, a voltage divider is required. Pay due care to the impedance.
In general, since the output impedance increases as the frequency band becomes higher, it is expressed as: $\left.R_{0} \Omega\right)+L_{0}((H)$.
If a voltage divider is inserted as shown in Fig. 4-9, this will cause errors, as described in the following example.
Example:
Errors will be caused as shown in Table 4-7, if the voltage dividing ratio is $1 / 10$ under the following conditions:
Input impedance of data recorder: $\mathrm{R} \mp 100 \mathrm{k}, \mathrm{C} \mp 100 \mathrm{pF}$
Output impedance of the amplifier unit: $\mathrm{R}_{0}=1 \Omega, \mathrm{~L}_{0}=200 \mu \mathrm{H}$

R_{1}	R_{2}	Errors caused by voltage divider (\%)				
$(\mathrm{k} \Omega)$	$(\mathrm{k} \Omega)$	DC	1 kHz	2 kHz	5 kHz	10 kHz
90	11.1	-0.08	-0.08	-0.09	-0.12	-0.24
9	1.01	-0.02	0.02	-0.02	-0.02	-0.02

Table 4-7 Error Caused by Voltage Divider

4.4 How to Read Measured Values

This section describes how to read the measured values of a waveform recorded on a data acquisition device or recorder.

Fig. 4-10

Measured value at point $B=\left\{\frac{b \text { (Amplitude at point } B \text {) }}{a \text { (Amplitude of calibration value) }}\right\} \times$ Set CAL value
(1) Measurement with strain gauges

Set CAL value: $500 \mu \varepsilon$
Deflection of CAL waveform: 10 mm
Deflection at point B: 22 mm
Amount of strain at point $B=\{2 / 10\} \times 500 \mu \varepsilon$

$$
=1100 \mu \varepsilon
$$

Where the measurement is based on the quarter-bridge configuration with a gauge factor of 2.00 .
(2) Measurement with various types of transducers

This calibration voltage value is linked with the bridge supply voltage, and the amount of calibration can always be applied with any panel-indicated value ($1 \mu \varepsilon$ to $9,999 \mu \varepsilon$).

Example:

If a load cell with a rated capacity and a rated output of 1 kN and $1 \mathrm{mV} / \mathrm{V}$ is used, to convert the rated output of $1 \mathrm{mV} / \mathrm{V}$ into an amount of strain, the rated output is given by: $1 \mathrm{mV} / \mathrm{V} \times 2 \mathrm{~V}=2 \mathrm{mV}$

Where the load cell is used with the bridge voltage $(\mathrm{E})=2 \mathrm{~V}$.
If the measurement is based on the quarter-bridge configuration with a gate factor (K) of 2.00 , the relationship between the amount of strain (ε) to be applied to the bridge and the output voltage (e) is given by:

$$
\mathrm{e}=1 / 4 \times \mathrm{K} \times \mathrm{E} \times \varepsilon=1 / 4 \times 2 \times 2 \times \varepsilon=\varepsilon
$$

That is, $1 \mu \varepsilon$ strain corresponds to $1 \mu \mathrm{~V}$ and $1000 \mu \epsilon$ to 1 mV . The rated output of 2 mV corresponds to $2000 \mu \varepsilon$. As a result, the relationship between calibration values and the physical amount is as follows irrespective of the bridge supply voltage:

Strain calibration value	Physical value calibration value
2000×10^{56} strain	$1 \mathrm{kN} \times 1=1 \mathrm{kN}$
1000×10^{56} strain	$1 \mathrm{kN} \times 1 / 2=500 \mathrm{~N}$
500×10^{56} strain	$1 \mathrm{kN} \times 1 / 4=250 \mathrm{~N}$
200×10^{56} strain	$1 \mathrm{kN} \times 1 / 10=100 \mathrm{~N}$

Table 4-8

The formula is as follows:
Calibration value of physical amount $=\frac{\text { Calibration value for } 10^{-6} \text { strain of the amplifier }}{\text { Rated output value }\left(10^{-6} \text { strain }\right)} \times$ Rated capacity

The physical amount can be calculated as follows:
Calibration value of physical amount: $250 \mathrm{~N}(500 \mu \varepsilon)$
Deflection of CAL waveform: 10 mm
Deflection at point B: 22 mm
The physical amount can be calculated as follows:

$$
\text { Load at point } B=\frac{22}{10} \times 250 N=550 N
$$

4.4.1 Correction of Calibration (CAL) Values

(1) Where gauge factors are not 2.00

In this amplifier unit, its gauge factor is set to 2.00 . If strain gauges with a gauge factor other than 2.00 are to be used, the following formula must be used.

True CAL value $=\frac{2.00}{\mathrm{Kc}(\text { Gauge factor of strain gauge })} \times \mathrm{CAL}$ value of unit
(2) Where bridge configurations are not quarter-bridge configuration

The calibration (CAL) values of this amplifier unit are equivalent voltage values based on the 2.00 gauge factor and the quarter-bridge configuration. The calibration values based on half- or full-bridge configurations can thus be obtained by referring to the next table.

The relationship between the bridge supply voltage and bridge output voltage can be represented by the following formula:
$\mathrm{e}=(\mathrm{K} x \varepsilon \times \mathrm{E} \times$ Bridge configuration $) / 4$
Where: K ; gauge factor
ε; Amount of strain ($10 \mu \in$)
E; bridge voltage

Gauge configuration		Real calibration value
Two-gauge	One active one dummy	Calibration value on panel $\times 1$
	Two active	Calibration value on panel $\times 1 / 2$
	Opposite arm two active	Calibration value on panel $\times 1 / 2$
Four-gauge	Four active	Calibration value on panel $\times 1 / 4$
Transducer	Four active	Calibration value on panel $\times 1\left(^{*}\right)$

Table 4-9

For details, refer to the remarks in the "Wheatstone Bridge Connections Table" on pages 4-3 to 4-4.
*Although transducers are generally based on the full-bridge configuration, their output is made to match the quarter-bridge configuration.
(3) Where the distance from the bridge box to the amplifier unit is long

If the cable from the bridge box or a transducer to the amplifier unit is long, the bridge supply will drop due to the conductor resistance of the cable. This causes errors between the bridge output voltage and the CAL value. For obtaining the voltage drop rate, refer to "Bridge Voltage Drop Rate" on page 4-6 or measure the voltage drop rate between terminals A and C on the bridge box, using a voltmeter.

Example:
If the cable length is 100 m and the strain gauge resistance is 120Ω under an ambient temperature of $20^{\circ} \mathrm{C}$, the bridge supply voltage will be reduced by 5.8% between terminals A and C, which can be obtained from the "Bridge Voltage Drop Rate Table" on page 4-6. The true calibration value can thus be given by:

True calibration value

$=\frac{1}{1-0.058} \times \quad$| Calibration |
| :--- |
| value on display |

Fig.4-11 Voltage measurement on bridge box

Such measurement and adjustment are not needed in Model 5693 amplifier thanks to cable length compensation (Page 3-7).

4.5 Special Applications

This section introduces examples that configure two or more bridges using a single power supply and calculate value of addition, average, and subtraction using several transducers.
4.5.1 Configuring two or more bridges using a single power supply

Fig. 4-12

Connect the E terminal of each bridge box. If the power is supplied separately, connect either of the power to the E terminal of the bridge box. The power supply should not exceed the common mode voltage $(\pm 5 \mathrm{~V})$.
4. 5. 2 Special use of transducer
(1) When calculating value of addition (Fig. 4-13)

Separate power supply is needed for E1, E2 and E3. In this case, 50 Hz or 60 Hz noise from commercial power supply will affect the measurement. To minimize the influence of the noise, add a capacitor.
(2) When calculating value of subtraction (Fig. 4-14)

Separate power supply is needed for E1 and E2. Also, in this case, 50 Hz or 60 Hz noise from commercial power supply will affect the measurement. To minimize the influence of the noise, add a capacitor.

Fig. 4-13

Fig. 4-14
(3) When calculating value of mean (Fig. 4-15)

Fig. 4-15

For use as above fig. $4-13$ to $4-15$, rated capacity needs to be equal if using transduce rs, and special attention is required on capacity of the bridge supply if using dynamic strai n measuring equipments.

5. OPERATION THEORY

5.1 Flow of Measurement Signal (Refer to fig. 5-1)

Fig. 5-1 Model 5693 Block Diagram

The signal from the bridge box or a transducer is applied to the INPUT connector 1 of this product and amplified through a low-noise preamplifier. To this preamplifier are added the outputs of a 4-digit digital calibration voltage generating circuit (CAL), a resistance unbalance adjusting circuit ($\mathrm{R} B A L$), only the signal of which is fed to the subsequent stage. The signal, which has been amplified through a main amplifier, is synchronously detected and filtered, and then outputted via a signal isolation circuit and HPF. There are two output systems: the output of OUTPUT 1 is displayed on a level meter (2), while the output of OUTPUT $2 \boxed{4}$ is displayed on a digital monitor (3).

6.OPTIONAL FINCTIONS

6.1 Current Output (56-201 4-20 mA output unit)

Current output can be incorporated into the amplifier unit as an optional function. The current output is made in a manner that allows the voltage output to OUTPUT2 to be converted into the current output. When the output voltage of this product is changed from 0 to +10 V , the output current ranging from 4 to 20 mA can be provided. The central conductor of the BNC connector delivers an output current, while its outer conductor serves as an output common. Turn the OUTPUT 2 level ADJ volume (18), which is located on the front panel, fully clockwise. When the polarity of the output voltage varies from positive to negative, the output current starts decreasing from 4 mA to approximately 0 mA . This $4-20 \mathrm{~mA}$ output unit can be built into the body of this product if requested upon the delivery order (with extra cost). To add this current output option to the already purchased product, contact our sales representative since your product needs to be modified. (Separately charged)

Specifications
Output : current range: Approximately $0-20 \mathrm{~mA}$ or larger
Current : 4-20 mA, Load: 500Ω or less, Voltage/current conversion accuracy: $\pm 0.1 \%$ or less

Fig.6-1

6.2 Case Function and Type

	Number of CH	TYPE
Bench- top Case	4 CH	$56-104$
	6 CH	$56-106$
	8 CH	$56-108$
Rack- mounting Case	8 CH	$56-208$

Table 6-1 Two Type of Case
We provide cases listed in Table 6-1. Select the case based on the number of channel to be used.

6.2.1 Accommodating Amplifier Units

When accommodating amplifier units into a case, first the slit on the bottom of the unit should be adjusted to the guide of the case. Press the amplifier unit slowly so that the power supply and interface connectors are connected securely. After installing all amplifier units, fix them with two screws at the top and bottom of the front face an amplifier unit.

6.2.2 How to Mount Blank Panel

Blank panels are used to cover the area of a case where amplifier units are not installed. To fix the panel to the case, use top and bottom screws.

6.2.3 Connecting Grounding Wire

When an amplifier unit is connected to a case, the protective grounding terminal, case protective grounding terminal, grounding terminal of batch power supply connector are connected and have the same potential.

The grounding wire should have AWG16 wire material and connected with a screw. Always connect the grounding wire to ground.

\triangle WARNING

Always ground the protective grounding terminal for safety.

6.2.4 Caution on Rack-mount Case

A rack-mount case is a case that is used for accommodating a case to 19 -inch rack. The rails on the left and right should be placed on the rails of the rack, and then fix the case by using four attaching holes. When using several cases, install a fan unit between cases in order to release heat and maintain amplifier accuracy.

©CAUTION

Avoid placing a rack-mount case on a desk or floor as the rack-mount case is no provided with rubber legs.

7.MAINTENANCE

7.1 Items to Be Checked

We ship our products after conducting quality control, which covers from design to manufacturing. It is, however, possible that failures may occur in the products due to natural degradation, components defects, or wire disconnection.

If a failure occurs, it is necessary to find the cause. In such case, check the following items and refer to page 4-1. If the cause cannot be found, contact our sales agency. Before returning, be sure to inform us of problematic points.

\triangle WARNING

- Check the power supply voltage range

Power supply voltage range: 85 to $132 \mathrm{VAC} / 180$ to 264 VAC
12VDC (10 to 30VDC)

- Check input strain range

Input voltage range: $1,000 \times 10^{-6}$ to $125,000 \times 10^{-6}$ strain (for Model 5693)

- Check common-mode voltage

First check the power supply voltage.

-Power Supply Voltage Range

DC Power Supply Voltage: $10-30 \mathrm{~V}$
AC Power Supply Voltage: $85-132 \mathrm{~V}, 50$ or 60 Hz

Symptom 1 The bridge is out of balance

Fig. 7-1 Check Item Chart (1)

Symptom 2 No signal is output.

Symptom 3 The bridge is balanced but the zero position drift with time.

Press the surface of the strain gauge softly. Then, does the level of level meter (2) move?

Yes: Remove the strain gauge and paste a new strain gauge.

No
Set the measuring range to OFF using measuring range selection knob (8) (OFF illuminates on measuring LED (11.). Disconnect the bridge circuit from the amplifier unit, and then measure the isolation resistance of the bridge circuit.

No: Remove the strain gauge and paste a new strain gauge

Fig. 7-1 Check Item Chart (2)

7.2 How to Replace Fuse

Follow the following fuse replacement procedure.

1. Turn the power switch to off, and then disconnect input and output cables from the amplifier unit.

2 . As shown in Fig.7-2, place the amplifier unit so that the front of the unit to be left side, bottom of the unit to be in the front, and the rear of the unit to be right side.
3 . Use a flat-blade screw driver and turn the fuses to the arrow directions mentioned on the fuse holders. (See Fig. 7-3, counter-clockwise)

Fig. 7-2
4. Replace the fuses at the front part of the fuse holders.

5 . The fuse ratings are: 100 VAC and 125 mA for AC power fuse and 12 VDC and 800 mA time-lag fuse (slow blowing) for DC power supply fuse. When replacing, be careful of AC and DC.
6 . When installing fuse holder, use a flat-blade screw driver. When pushing the fuse, keep the fuse holder slit to be vertical to the amplifier unit (Fig. 7-2, dotted line), and then press deeply and turn clockwise by 90 degree.

Fig. 7-4

Fig. 7-5
7. Confirm that the fuse holder is fully installed in the amplifier unit as Fig. 7-2. Also, confirm that the fuse holder slit (flat-blade screw driver contact portion) is parallel to the amplifier unit as Fig. 7-3.
8 . The fuse replacement is completed. Examine why the fuse was brown. After taking measures, turn on the amplifier.

\triangle WARNING

Power cord and input/output cable should be disconnected from the amplifier unit. Always use fuses having specified ratings.

7.3 Changing AC Power Supply Voltage

Follow the steps below to switch the AC power supply voltage.
1 Turn off and disconnect the power cord and input/output cable from the amplifier unit.
2 Remove the cover using two screws (M3) on the top face (Fig. 7-6).
3. The AC power supply selection switch is positioned at the location shown in Fig. 7-7. Selection to 200 VAC, OFF, and 100 VAC is available. Voltage switching is available by sliding the switch to the target voltage position. The fuse can support both 100 VAC and 200 VAC. The installed fuse ($100 \mathrm{VAC} / 200 \mathrm{VAC}, 125 \mathrm{~mA}: 0334-3007$) can therefore be used for both supply voltages.
4. Attach the amplifier cover so that the slit of the amplifier cover matches to the frame of the amplifier unit.
5. Fasten the screws of upper face.
6. When using 200 VAC power supply, use optional AC power supply cord 200 V (Fig. 7-8: 0311-5112).

Fig.7-6

Fig.7-8 AC Power cord for 200V

. WARNING

Power cord and input/output cable should be disconnected.
As the AC power cord 200 V (0311-5112) has bare wire at one end, processing is needed to connect to the power source.
After switching the power supply voltage, change the power supply voltage rating indicated on the plate on the amplifier cover.

8.SPECIFICATIONS

Item	Description
Number of Channels	1 channel/unit
Bridge resistance	$60-1,000 \Omega$
Gage factor	2.00
Bridge power voltage supply	2, 3, 5, 9, 10 VDC
Disconnection check function	Detecting disconnection and short of input bridge circuit (bridge impedance of 120Ω or larger) and displaying checked result by LED Function ON/OFF is available by using the bottom setting SW
Cable length adjusting function	Automatic adjusting of bridge power voltage drop according to a change of cable length up to bridge circuit (bridge impedance of 120Ω or larger). Function ON/OFF is available by using the bottom setting SW
Balance adjusting range	Deviation of resistive value: $\pm 2 \%\left(\pm 10,000 \times 10^{-6}\right.$ strain) (Both in auto-balance and fine-tuning)
Balance adjusting accuracy	Within $\pm 1.0 \times 10^{-6}$ strain (RANGE $=1 \mathrm{k}$, Without FINE, BV $=2 \mathrm{~V}$)
Maximum input range	$\pm 125,000 \times 10^{-6}$ strain (RANGE $=50 \mathrm{k}, \mathrm{FINE}=\times 2.5, \mathrm{BV}=2 \mathrm{~V}$)
Voltage sensitivity	$\pm 10 \mathrm{~V} / \pm 1,000 \times 10^{-6}$ strain input (RANGE $=1 \mathrm{k}$, Without FINE, BV $=2 \mathrm{~V}$)
Measurement range change	$1 \mathrm{k}, 2 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 20 \mathrm{k}, 50 \mathrm{k}$ ($\times 10^{-6}$ strain, $\times 2 / \mathrm{BV}$ in value), OFF
Fine adjustment	Continuously changeable in FINE RANGE, 2 step changing amount can be selected
Internal calibrator	Set value: $\pm 1-9,999 \times 10^{-6}$ strain, Accuracy: $\pm\left(0.2 \% \mathrm{rdg}+0.5 \times 10^{-6}\right.$ strain $)$ Set value: $\pm 0.01-99,99 \mathrm{mV}(\pm 0.01-59.99 \mathrm{mV}$ at $\mathrm{BV}=2 \mathrm{~V}$), Accuracy: $\pm(0.2 \% \mathrm{rdg}+5 \mu \mathrm{~V})$
Nonlinearity	Within $\pm 0.1 \% / \mathrm{FS}$
Frequency response	DC to $500 \mathrm{kHz},+1,-3 \mathrm{~dB}$
High-pass filter	0.5 Hz : 2-pole Bessel (Filter descent response: - $12 \mathrm{~dB} / \mathrm{oct}$)
Low-pass filter	10, 30, 100, 1k, 3kHz, 4-pole Bessel (Filter descent response: -24dB/oct)
Stability	Zero drift: Within $\pm 0.1 \times 10^{-6}$ strain $/{ }^{\circ} \mathrm{C}$, Within $\pm 0.5 \times 10^{-6}$ strain $/ 24 \mathrm{~h}$ Sensitivity: Within $\pm 0.01 \% /{ }^{\circ} \mathrm{C}$, within $\pm 0.05 \% / 24 \mathrm{~h}$

Table 8-1 Specification list for Model 5693 (1)

Item	Description
Noise level	$80 \times 10^{-6} \text { strain p-p RTI }$ (W/B, RANGE $=1 \mathrm{k}$, Without FINE, $\mathrm{BV}=2 \mathrm{~V}, 120 \Omega$ bridge) 20×10^{-6} strain p-p RTI ($\mathrm{DC}-30 \mathrm{kHz}$, RANGE $=1 \mathrm{k}$, Without FINE, BV $=2 \mathrm{~V}, 120 \Omega$ bridge)
Output	OUTPUT1 $\pm 10 \mathrm{~V} \pm 5 \mathrm{~mA}$, OUTPUT2 $\pm 10 \mathrm{~V} \pm 10 \mathrm{~m} \mathrm{~A}$ Output impedance: 0.5Ω or less, Capacitive load: Operable up to $0.1 \mu \mathrm{~F}$ (For output current of $4-20 \mathrm{~mA}$: Load impedance: 500Ω or less, Output impedance: Approx. $5 \mathrm{M} \Omega$, Voltage/current conversion accuracy: Within $\pm 0.1 \%$)
Output adjustment	OUTPUT2 ADJ (Can be independently varied continuously from 1 to 1/10)
Output monitor display	17-dot LED display (OUTPUT1 monitor) Green LED at center blinks when voltage is within approximately $\pm 100 \mathrm{mV}$. LEDs at both ends blink when voltage is greater than approximately $\pm 10.5 \mathrm{~V}$
Digital display	$41 / 2$ digital display (OUTPUT2 monitor), Scaling display available with OUTPUT2 ADJ Accuracy: Within $\pm 0.05 \%$ rdg ± 1 count, Displaying location of decimal point can be changed by using the bottom setting SW.
Key lock function	Turning the key lock ON/OFF by pressing the key lock button approximately for one second. (Except CAL switch and BV selection switch)
Setting value saving	Saving the value in flash memory. (Can be held without back-up battery)
Resistance to vibration	$29.4 \mathrm{~m} / \mathrm{s}^{2}$ ($50 \mathrm{~Hz}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}, 10$ minutes for each) and conforming to MIL-STD-810F 514.5C-1
Withstand Voltage (Insulation resistance)	1.5 kVAC, 1 minute, between each input terminal output and housing case 1 kVAC, 1 minute, between DC power input and input 500 VAC, 1 minute, between DC power input and output or housing case
AC power supply	85-132 VAC/180-264 VAC (Internal switch must be changed) 10 VA or less
DC power supply	DC10-30V, 7 VA or less
Operating environmental conditions	$-10^{\circ} \mathrm{C}-+50^{\circ} \mathrm{C}$, Within $20-85 \% \mathrm{RH}$, without condensation
Storage temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Within $10-90 \% \mathrm{RH}$
Outline dimension	H143 ($\pm 1.0) \times$ W49.5 ($\pm 0.5) \times$ D253 ($\pm 2.0) \mathrm{mm}$ *Excluding protrusion
Weight	Within $1.4(\pm 0.1) \mathrm{kg}$

Table 8-1 Specification list for Model 5693 (2)

Item	Description
Input impedance	Approx. $10 \mathrm{M} \Omega+$ Approx. $10 \mathrm{M} \Omega$ (DC)
Zero adjustment range	$\pm 10 \mathrm{mV}$ (RTI) (BV $=2 \mathrm{~V}$) (incl. auto-balancing and fine-tuning)
Balancing adjustment resolution	Within $\pm 1 \mu \mathrm{~V}$ (RTI) (RANGE $=1 \mathrm{k}$, without FINE, BV $=2 \mathrm{~V}$)
Measuring range	$\pm 125 \mathrm{mV}$ (input equivalent value) (RANGE $=50 \mathrm{k}, \mathrm{FINE}=2.5 \mathrm{X}, \mathrm{BV}=2 \mathrm{~V}$)
Gain	10,000X (RANGE = 1k), 5,000X (2k), 2,000X (5k), 1,000X (10k), 500X (20k), 200X (50k) (Without FINE)
Gain resolution	± 0.1 \%
Common mode rejection ratio (CMRR)	70 dB or more (50 Hz or 60 Hz) at 1 k (balanced input
Maximum allowable input voltage	$\pm 8 \mathrm{VDC}$ or AC peak value
Common mode allowable input voltage	$\pm 5 \mathrm{VDC}$ or AC peak value
Internal calibrator	Set value: ± 0.01 to 99.99 mV (± 0.01 to 59.99 mV at $\mathrm{BV}=2 \mathrm{~V}$) Accuracy: $\pm(0.2 \% r d g+5 \mu \mathrm{~V})$
Linearity	Within $\pm 0.01 \%$ FS
Stability	Zero point: Within $\pm \mu \mathrm{V} /{ }^{\circ} \mathrm{C}, \pm 5 \mu \mathrm{~V} / 24$ hours Sensitivity: Within $\pm 0.01 \% /{ }^{\circ} \mathrm{C}, \pm 5 / 24$ hours
Noise	$80 \mu \mathrm{~V}$ p-p RTI (W/B, RANGE $=1 \mathrm{k}(10,000 \mathrm{X})$, without FINE, BV $=2 \mathrm{~V}$) $20 \mu \mathrm{~V}$ p-p RTI (DC to 30 kHz , RANGE $=1 \mathrm{k}$, without FINE, BV $=2 \mathrm{~V}$)

Table 8-2 Specification List for Model 5693 as DC Amplifier

9.REFERENCES

9.1 Frequency Characteristics and Phase Properties

9.2 Cable List

Name	Shape	Pin alignment	Remark
Bridge box TYPE 5370(120) 5373(350)		A...+BV B...- Input C...-BV D...+ Input E... Shield	Length: 3m External diameter of cable $\Phi 9.6$ Core wire: $0.5 \mathrm{~mm}^{2}$
Mini bridge box TYPE: 5379(120) 5380(350)		A...+BV B...- Input C...-BV D...+ Input E... Shield	Length: 2m External diameter of cable: $\Phi 6.0$ Core wire: $0.3 \mathrm{~mm}^{2}$
DC input cable TYPE: 47288		Red ... Output White ...- Output Internal shield: Shield External shield: Common	Length: 2m
Output cable TYPE: 0311-2057 (Black mold) TYPE: 0311-5084 (Red Mold)		Red ...+ Output (BNC core wire) Black: common	Length: 2m Metal BNC -alligator clip (+Red, - Black Model 5693 amplifier unit: Attached as standard (One piece)
Output cable TYPE: 47226	原		Length: 2m Metal BNC-Metal BNC
Output cable TYPE: 0311-5022			Length: 1 m Metal BNC -Banana plug
Output cable TYPE: 0311-5174			Length: 2m Double banana plug--Metal BNC For RA connection

Table 9-1 Cable List (1)

Name	Shape	Pin alignment	Remark
Output cable TYPE：0311－5200	首三可		Length： 2 m Insulated BNC －Metal BNC， For RA connection
AC power cord For amplifier unit and case （100VAC） TYPE： 47326	$\square \operatorname{lan}^{\text {Ren }}$		Length： 2.5 m With 2－pole／3－pole conversion plug （KPR－24S） Model 5693 amplifier unit and case：attached as standard（one）
AC power cord For amplifier unit （200V） TYPE：0311－5112			Length： 3.5 m Bare wire
DC power cord For amplifier unit TYPE：56－401		Red $\mathrm{moDC}(+)$ Black 이DC（－） Green 0 Shield	Length：2m D－sub9pin male－Bare wire
DC power cord For case TYPE： 47229		Red $\mathrm{moDC}(+)$ Black 이DC（－） Shield	Length： 2.5 m External diameter of cable： $\boldsymbol{\Phi} 10$ Core wire： $1.25 \mathrm{~mm}^{2}$
Junction cable TYPE： 47230		A．．．＋BV B．．．－Input C．．．－BV D．．．＋Input E．．．Shield	Length： 10 m External diameter of cable：$\Phi 9.6$ Core wire： $0.5 \mathrm{~mm}^{2}$
Extension cable TYPE： 47231		A．．．＋BV B．．．－Input C．．．－BV D．．．＋Input E．．．Shield	Length：25m External diameter of cable：$\Phi 9.6$ Core wire： $0.5 \mathrm{~mm}^{2}$

Table 9－1 Cable List（2）

Name	Shape	Pin alignment	Remark
Synchronization cable TYPE: 56-402	(5) (4) (3) (2) (1) (9) (8) (7) (6) (Case connector)	(1)+CAL (2)-CAL (3)BAL (4)(OSC) (5)(GND) (6)KEYLOCK (7)GND 8(DC+) (9)(DC-)	Length: 1.8 m D-Sub9pin male ---D-Sub9pin male Straight cable (8),(9): wiring is made for only amplifier unit
Input attenuator Probe (1/100) TYPE: 47332	岒	Red ... Input White ...- Input Shield: common	Length: 2m

Table 9-1 Cable List (3)

9．3 Dimensional outline drawing

9－3－1 Unit

しまとクし

Name	Type	A	B
4CH Bench top case	$56-104$	262.6	236
6CH Bench top case	$56-106$	362.6	336
8CH Bench top case	$56-108$	462.6	436

9-3-4 Rack-mount Case

9-3-5 Fan Unit

- This manual may not be reproduced to any form in whole or in part.
-Then contents in this manual may be updated without prior notice.

HEAD OFFICE
: 1-17-16,NISHI-HOKIMA,ADATI-KU,TOKYO 121-0812 J APAN

FACTORY : 5-24-27,HOKIMA,ADATI-KU,TOKYO 121-0064 J APAN
Tel.03(3850)5431/F ax.03(3850)5436

Tel.03(3858)3241/F ax.03(3859)1240

